Dopaminergic dysregulation and sleep-related disorders: Willis-Ekbom's and Parkinson's diseases

octobre 2013 Directeur(s) de thèse : Imad GHORAYEB Résumé de thèse

During this thesis project we explored several aspects of the impact of a dopaminergic system dysregulation on the rest alterations, through two neurological diseases: the Willis-Ekbom’s disease (WED) and Parkinson’s diseases (PD). The WED is a neurological sensorimotor disorder mainly characterized by pain in lower limbs. It preferentially appears in the evening and transiently and partially is alleviated by motor activity.

Thus, the first part of this work aimed at reproducing the main dysfunctions of the iron and dopaminergic metabolisms observed in WED, in the macaque monkey. We first established the circadian variations of iron-indicator concentrations in serum and cerebrospinal fluid. Then we developed a rapid protocol based on repeated blood withdrawals, inducing rapid and stable serum iron depletion. Finally, this protocol enabled us to investigate the relationship between iron metabolism dysfunctions, neurochemical alterations and the subsequent locomotor behavioural changes.

In the second part, of this research project we examined the impact of selective D1 (SKF38393) and D2 (quinpirole) receptor agonists on the sleep impairments in a macaque model of PD using the polysomnographic recording technique. Thus we investigated the effects of these two pharmacological compounds on the daytime sleepiness and on the paradoxical sleep induced by MPTP intoxication. Our results demonstrated the inefficacy of quinpirole to restore these two altered sleep parameters. By contrast, SKF38393 significantly decreased daytime napping and substantially restored paradoxical sleep.

Finally, the monoaminergic dysregulations, induced by iron depletion, may offer multiple perspectives to unravel the WED pathophysiology. In the same line, the beneficial effects exhibited by the D1 receptor agonist bring new therapeutic avenues to treat sleep-wake disorders in PD. Together, the global results bring new insights in the underlying mechanisms of sleep impairment involving dopamine.